Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds.

نویسندگان

  • Edward A Sander
  • Alina M Alb
  • Eric A Nauman
  • Wayne F Reed
  • Kay C Dee
چکیده

Poly(lactide-co-glycolide) (PLGA) is used in many biomedical applications because it is biodegradable, biocompatible, and FDA approved. PLGA can also be processed into porous tissue scaffolds, often through the use of organic solvents. A static light scattering experiment showed that 75/25 PLGA is well solvated in acetone and methylene chloride, but forms aggregates in chloroform. This led to an investigation of whether the mechanical properties of the scaffolds were affected by solvent choice. Porous 75/25 PLGA scaffolds were created with the use of the solvent casting/particulate leaching technique with three different solvents: acetone, chloroform, and methylene chloride. Compression testing resulted in stiffness values of 21.7 +/- 4.8 N/mm for acetone, 18.9 +/- 4.2 N/mm for chloroform, and 30.2 +/- 9.6 N/mm for methylene chloride. Permeability testing found values of 3.9 +/- 1.9 x 10(-12) m2 for acetone, 3.6 +/- 1.3 x 10(-12) m2 for chloroform, and 2.4 +/- 1.0 x 10(-12) m2 for methylene chloride. Additional work was conducted to uncouple polymer/solvent interactions from evaporation dynamics, both of which may affect the scaffold properties. The results suggest that solvent choice creates small but significant differences in scaffold properties, and that the rate of evaporation is more important in affecting scaffold microstructure than polymer/solvent interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model

Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes. HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajo...

متن کامل

Influence of Radiation Sterilization on Properties of Biodegradable Lactide/Glycolide/Trimethylene Carbonate and Lactide/Glycolide/ε-caprolactone Porous Scaffolds with Shape Memory Behavior

The aim of the study was the evaluation of gamma irradiation and electron beams for sterilization of porous scaffolds with shape memory behavior obtained from biodegradable terpolymers: poly(l-lactide-co-glycolide-co-trimethylene carbonate) and poly(l-lactide-co-glycolide-co-ɛ-caprolactone). The impact of mentioned sterilization techniques on the structure of the scaffolds before and after the ...

متن کامل

In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.

In vitro degradation behaviors of three-dimensional tissue engineering porous scaffolds made from amorphous poly(D,L-lactide-co-glycolide) with three different formulations have been systematically investigated up to 26 weeks in phosphate buffer saline solution at 37 degrees C. The following properties of the scaffolds were measured as a function of degradation time: dimensions, weight, compres...

متن کامل

Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.

For some bone tissue engineering strategies, direct contact of newly synthesized bone with a scaffold is important for structural continuity and stability at the scaffold/bone interface. Thus, as the polymer degrades, the support function of the scaffold could be adopted by the developing bone structure. This study was designed to determine whether poly(DL-lactide-co-glycolide) with a comonomer...

متن کامل

Encapsulation of Naja –Naja Oxiana Snake venom into Poly (lactide-co-glycolide) microspheres

One small-scale double emulsion technique for incorporation of Naja- Naja oxiana venom into Poly (lactide-co-glycolide) (PLGA) microspheres were developed and optimized. The effects of high speed homogenization on the double emulsion stability, microsphere size, entrapment efficiency and In vitro release of venom were studied. A stable double emulsion was verified by homogenization method. Slow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2004